Appears in the First International Conference on Knowledge Discovery and Data Mining (KDD-95) Feature Subset Selection Using the Wrapper Method: Over tting and Dynamic Search Space Topology
نویسندگان
چکیده
In the wrapper approach to feature subset selection, a search for an optimal set of features is made using the induction algorithm as a black box. The estimated future performance of the algorithm is the heuristic guiding the search. Statistical methods for feature subset selection including forward selection, backward elimination, and their stepwise variants can be viewed as simple hill-climbing techniques in the space of feature subsets. We utilize bestrst search to nd a good feature subset and discuss over tting problems that may be associated with searching too many feature subsets. We introduce compound operators that dynamically change the topology of the search space to better utilize the information available from the evaluation of feature subsets. We show that compound operators unify previous approaches that deal with relevant and irrelevant features. The improved feature subset selection yields signi cant improvements for real-world datasets when using the ID3 and the Naive-Bayes induction algorithms.
منابع مشابه
A Parallel Genetic Algorithm Based Method for Feature Subset Selection in Intrusion Detection Systems
Intrusion detection systems are designed to provide security in computer networks, so that if the attacker crosses other security devices, they can detect and prevent the attack process. One of the most essential challenges in designing these systems is the so called curse of dimensionality. Therefore, in order to obtain satisfactory performance in these systems we have to take advantage of app...
متن کاملA Parallel Genetic Algorithm Based Method for Feature Subset Selection in Intrusion Detection Systems
Intrusion detection systems are designed to provide security in computer networks, so that if the attacker crosses other security devices, they can detect and prevent the attack process. One of the most essential challenges in designing these systems is the so called curse of dimensionality. Therefore, in order to obtain satisfactory performance in these systems we have to take advantage of app...
متن کاملFuzzy-rough Information Gain Ratio Approach to Filter-wrapper Feature Selection
Feature selection for various applications has been carried out for many years in many different research areas. However, there is a trade-off between finding feature subsets with minimum length and increasing the classification accuracy. In this paper, a filter-wrapper feature selection approach based on fuzzy-rough gain ratio is proposed to tackle this problem. As a search strategy, a modifie...
متن کاملFeature Subset Selection Using the Wrapper Method: Overfitting and Dynamic Search Space Topology
In the wrapper approach to feature subset selection, a search for an optimal set of features is made using the induction algorithm as a black box. The estimated future performance of the algorithm is the heuristic guiding the search. Statistical methods for feature subset selection including forward selection, backward elimination, and their stepwise variants can be viewed as simple hill-climbi...
متن کاملFast SFFS-Based Algorithm for Feature Selection in Biomedical Datasets
Biomedical datasets usually include a large number of features relative to the number of samples. However, some data dimensions may be less relevant or even irrelevant to the output class. Selection of an optimal subset of features is critical, not only to reduce the processing cost but also to improve the classification results. To this end, this paper presents a hybrid method of filter and wr...
متن کامل